基于传感器的自动评估痴呆症患者的挑战行为是支持选择干预措施的重要任务。但是,由于患者间和病人的差异很大,预测诸如冷漠和躁动之类的行为具有挑战性。本文的目的是通过利用患者在一天中或一周中的某些时间表现出特定行为的观察来提高识别性能。我们建议通过聚类时间段的注释分布来识别类似行为的段。群集中的所有时间段然后由相似的行为组成,因此表明行为倾向(BPD)。我们通过为每个BPD培训分类器来利用BPD。从经验上讲,我们证明,当知道每个时间段的BPD时,活动识别性能可以大大提高。
translated by 谷歌翻译
异常解释是确定将样本与正常数据区分开的一组功能的任务,这对于下游(人)决策很重要。现有方法基于特征子集的空间中的光束搜索。它们在计算上很快变得昂贵,因为他们需要为每个功能子集从头开始运行异常检测算法。为了减轻这个问题,我们提出了一种基于总和网络(SPNS)(一类概率电路)的新型离群解释算法。我们的方法利用了SPN中边际推断的障碍,以计算特征子集中的离群分数。通过使用SPNS,可以向后消除而不是通常的前向光束搜索,这是可行的,该搜索不太容易在说明中缺少相关功能,尤其是当功能数量较大时。我们从经验上表明,我们的方法取得了最先进的结果,以实现异常说明,表现优于最近的基于搜索和深度学习的解释方法
translated by 谷歌翻译
我们考虑在无法访问网络培训数据(例如由于隐私或安全问题)的情况下为神经网络产生解释。最近,已经提出了$ \ Mathcal {i} $ - 网络是一种无样品后全球模型可解释性的方法,不需要访问培训数据。他们将解释作为机器学习任务,将网络表示(参数)映射到可解释功能的表示。在本文中,我们将$ \ Mathcal {i} $ - 网络框架扩展到标准和软决策树作为替代模型的情况。我们提出了相应的$ \ Mathcal {i} $ - 净输出层的合适决策树表示和设计。此外,我们通过在生成$ \ Mathcal {i} $ - NET的培训数据时考虑更现实的分布来制作适用于现实世界任务的NETS $ \ MATHCAL {I} $ - NETS。我们对传统的全球,事后解释性方法进行经验评估我们的方法,并表明当无法访问培训数据时,它可以取得优势。
translated by 谷歌翻译
Diversity Searcher is a tool originally developed to help analyse diversity in news media texts. It relies on a form of automated content analysis and thus rests on prior assumptions and depends on certain design choices related to diversity and fairness. One such design choice is the external knowledge source(s) used. In this article, we discuss implications that these sources can have on the results of content analysis. We compare two data sources that Diversity Searcher has worked with - DBpedia and Wikidata - with respect to their ontological coverage and diversity, and describe implications for the resulting analyses of text corpora. We describe a case study of the relative over- or under-representation of Belgian political parties between 1990 and 2020 in the English-language DBpedia, the Dutch-language DBpedia, and Wikidata, and highlight the many decisions needed with regard to the design of this data analysis and the assumptions behind it, as well as implications from the results. In particular, we came across a staggering over-representation of the political right in the English-language DBpedia.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many physical invariances and symmetries can be incorporated into the kernel function to compensate for much larger datasets. So far, the scalability of this approach has however been hindered by its cubical runtime in the number of training points. While it is known, that iterative Krylov subspace solvers can overcome these burdens, they crucially rely on effective preconditioners, which are elusive in practice. Practical preconditioners need to be computationally efficient and numerically robust at the same time. Here, we consider the broad class of Nystr\"om-type methods to construct preconditioners based on successively more sophisticated low-rank approximations of the original kernel matrix, each of which provides a different set of computational trade-offs. All considered methods estimate the relevant subspace spanned by the kernel matrix columns using different strategies to identify a representative set of inducing points. Our comprehensive study covers the full spectrum of approaches, starting from naive random sampling to leverage score estimates and incomplete Cholesky factorizations, up to exact SVD decompositions.
translated by 谷歌翻译
We present an automatic method for annotating images of indoor scenes with the CAD models of the objects by relying on RGB-D scans. Through a visual evaluation by 3D experts, we show that our method retrieves annotations that are at least as accurate as manual annotations, and can thus be used as ground truth without the burden of manually annotating 3D data. We do this using an analysis-by-synthesis approach, which compares renderings of the CAD models with the captured scene. We introduce a 'cloning procedure' that identifies objects that have the same geometry, to annotate these objects with the same CAD models. This allows us to obtain complete annotations for the ScanNet dataset and the recent ARKitScenes dataset.
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译
Earthquakes, fire, and floods often cause structural collapses of buildings. The inspection of damaged buildings poses a high risk for emergency forces or is even impossible, though. We present three recent selected missions of the Robotics Task Force of the German Rescue Robotics Center, where both ground and aerial robots were used to explore destroyed buildings. We describe and reflect the missions as well as the lessons learned that have resulted from them. In order to make robots from research laboratories fit for real operations, realistic test environments were set up for outdoor and indoor use and tested in regular exercises by researchers and emergency forces. Based on this experience, the robots and their control software were significantly improved. Furthermore, top teams of researchers and first responders were formed, each with realistic assessments of the operational and practical suitability of robotic systems.
translated by 谷歌翻译
Fine-grained semantic segmentation of a person's face and head, including facial parts and head components, has progressed a great deal in recent years. However, it remains a challenging task, whereby considering ambiguous occlusions and large pose variations are particularly difficult. To overcome these difficulties, we propose a novel framework termed Mask-FPAN. It uses a de-occlusion module that learns to parse occluded faces in a semi-supervised way. In particular, face landmark localization, face occlusionstimations, and detected head poses are taken into account. A 3D morphable face model combined with the UV GAN improves the robustness of 2D face parsing. In addition, we introduce two new datasets named FaceOccMask-HQ and CelebAMaskOcc-HQ for face paring work. The proposed Mask-FPAN framework addresses the face parsing problem in the wild and shows significant performance improvements with MIOU from 0.7353 to 0.9013 compared to the state-of-the-art on challenging face datasets.
translated by 谷歌翻译